

aerospace climate control electromechanical filtration fluid & gas handling hydraulics pneumatics process control sealing & shielding

Motion Control Products Overview

ENGINEERING YOUR SUCCESS.

Marning – USER RESPONSIBILITY

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

- This document and other information from Parker-Hannifin Corporation, its subsidiaries and authorized distributors provide product or system options for further investigation by users having technical expertise.
- The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning the product in the current product catalog and in any other materials provided from Parker or its subsidiaries or authorized distributors.
- To the extent that Parker or its subsidiaries or authorized distributors provide component or system options based upon data or specifications provided by the user, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the components or systems.

Parker Hannifin	4
Drives	
Markets and Applications	
Key Features	
Drives by Function	
Associated Drives & Motors	
Intelligent Servo Drive Compax3	
Compact Servo Drive - SLVD-N	
Triple Axis Servo Drive - TPD-M	
Servo Motor with Integrated Servo Drive - Motor	
Flexible Servo Drive - Hi-Drive	
Servo Drive - 638 Series	21
Micro Servo Drive - ViX	
Micro Stepper Drive - ViX	23
DC Servo Drive - RTS	24
Motors	
Markets and Applications	
Main Functions	
Low Inertia Servo Motors - SMB / SMH	
Servo Motor - MB / MH	
Low Cogging Servo Motor - NX Series	
Explosion Proof Servo Motor - EX Series	
High Speed Servo Motor - NV Series	
Frameless Servo Motor - NK Series	35
Frameless Spindle Servo Motor - SKW Series	
Frameless AC Brushless Motor - HKW Series	
Frameless Servo Motor - TK Series	
Stepper Motor - SY	
High Performance DC Servo Motor - RS Series	
Low-Cost DC Servo Motor - RX Series	
Pancake DC Servo Motor - AXEM Series	
Planetary Gearboxes	
Precision Planetary Gearboxes PS / RS Series	45
Economical Planetary Gearheads - PE	
Controller Products	
IEC61131-3 Controller with Powerlink - ACR964	
IEC61131-3 Controller with CANopen - C3 power	ዋL <i>m</i> C-E3050
Touchscreen HMI with Integrated Webserver - Ir	•
Modular I/O - System - PIO	

Parker Hannifin

The global leader in motion and control technologies and systems

Global Partnerships Global Support

Parker is committed to helping make our customers more productive and more profitable through our global offering of motion and control products and systems. In an increasingly competitive global economy, we seek to develop customer relationships as technology partnerships. Working closely with our customers, we can ensure the best selection of technologies to suit the needs of our customers' applications.

Electromechanical Technologies for High Dynamic Performance and Precision Motion

Parker electromechanical technologies form an important part of Parker's global motion and control offering. Electromechanical systems combine high performance speed and position control with the flexibility to adapt the systems to the rapidly changing needs of the industries we serve.

aerospace climate control

electromechanical filtration fluid & gas handling hydraulics pneumatics process control sealing & shielding

Parker Hannifin Corporation

With annual sales exceeding \$12 billion in fiscal year 2011, Parker Hannifin is the world's leading diversified manufacturer of motion and control technologies and systems, providing precisionengineered solutions for a wide variety of mobile, industrial and aerospace markets. The company employs approximately 58 000 people in 47 countries around the world.

Parker has increased its annual dividends paid to shareholders for 55 consecutive fiscal years, among the top five longest-running dividend-increase records in the S&P 500 index. For more information, visit the company's website at www.parker.com, or its investor information website at www.phstock.com.

Issue: 2012

Parker Hannifin

- the global leader in motion and control technologies

A world class player on a local stage

Global Product Design

Parker Hannifin has more than 40 years experience in the design and manufacturing of drives, controls, motors and mechanical products. With dedicated global product development teams, Parker draws on industry-leading technological leadership and experience from engineering teams in Europe, North America and Asia.

Local Application Expertise

Parker has local engineering resources committed to adapting and applying our current products and technologies to best fit our customers' needs.

Manufacturing to Meet Our Customers' Needs

Parker is committed to meeting the increasing service demands that our customers require to succeed in the global industrial market. Parker's manufacturing teams seek continuous improvement through the implementation of lean manufacturing methods throughout the process. We measure ourselves on meeting our customers' expectations of quality and delivery, not just our own. In order to meet these expectations, Parker operates and continues to invest in our manufacturing facilities in Europe, North America and Asia.

Worldwide Manufacturing Locations

Europe

Littlehampton, United Kingdom Dijon, France Offenburg, Germany Milan, Italy

Asia

Shanghai, China Chennai, India

North America

Rohnert Park, California Irwin, Pennsylvania Wadsworth, Ohio Charlotte, North Carolina New Ulm, Minnesota

Offenburg, Germany

Local Manufacturing and Support in Europe

Parker provides sales assistance and local technical support through a network of dedicated sales teams and authorized technical distributors throughout Europe.

For contact information, please refer to the Sales Offices on the back cover of this document or visit www.parker.com

Milan, Italy

Littlehampton, UK

Manufacturing
 Parker Sales Offices
 Distributors



Dijon, France

Solutions to Improve Productivity, Increase Flexibility and Save Energy

Process Productivity and Reliability

Parker brings together the technology and experience required for continuous process applications across many industries. Electromechanical and drive products combine application specific functionality to ensure precise speed control and reliable performance. Parker combines more than 30 years of application experience with a global sales and support network that help you increase your machine availability.

Converting machinery	AC- Drives	DC- Drives	Direct-Driv Motors	Servo Driv and Motor
Folding, gluing, stitching and collating	\checkmark	\checkmark		\checkmark
Coating, laminating and foil stamping	\checkmark	\checkmark	\checkmark	\checkmark
Slitting, cutting and rewinding	\checkmark	\checkmark	\checkmark	\checkmark
Plastics processing machinery				
Plastic extrusion	\checkmark		\checkmark	
Injection moulding	\checkmark		\checkmark	\checkmark
Thermal forming	\checkmark		\checkmark	\checkmark
Wire and cable				
Wire and cable manufacturing	\checkmark	\checkmark		\checkmark
Winding/unwinding	\checkmark	\checkmark	\checkmark	
Extrusion for wire and cable	\checkmark	\checkmark	\checkmark	
Printing Machinery				
Web/sheetfed offset	\checkmark		\checkmark	\checkmark
Flexo printing	\checkmark		\checkmark	\checkmark
Gravure printing	\checkmark		\checkmark	\checkmark
Shaftless printing	\checkmark		\checkmark	\checkmark
Other industries				
Paper machinery	\checkmark		\checkmark	
Sugar processing	\checkmark	\checkmark		
Steel production	\checkmark	\checkmark	\checkmark	
Construction materials	\checkmark	\checkmark		
Automotive test rigs	\checkmark	\checkmark	\checkmark	

Energy Efficiency and Clean Power

Parker has developed the technology to maximize the efficient use of energy in industrial, mobile and infrastructure environments.

Hybrid Vehicle Technology

Parker has adapted its electric drive technologies for use in hybrid electric vehicles, including utility vehicles and passenger vehicles. Examples include inverters and motor drives, as well as electric drive motors.

Energy-savings for pumps, fans and compressors

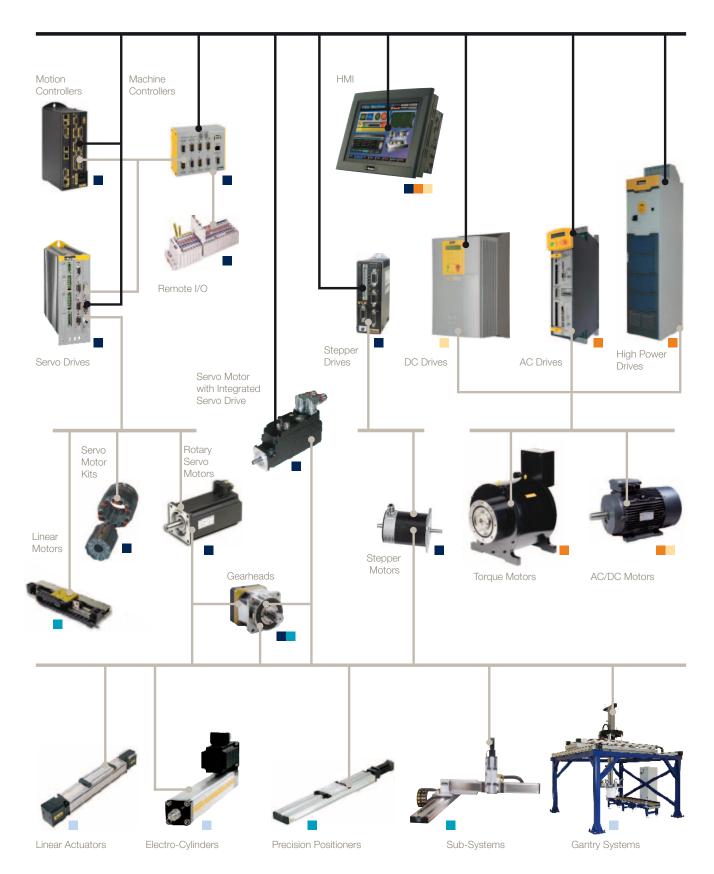
Parker has the drive technology to help you make significant energy savings in the operation of pumps, fans and compressors in both industrial and infrastructure applications, including:

- Commercial refrigeration
- Water and wastewater treatment
- Building automation
- Industrial processes
- Hydraulic systems

es es

ð

Power Generation and Conversion Using proven inverter technology, Parker has developed numerous solutions for the conversion of energy for commercial use from a variety of sources, including wind, wave and energy storage devices.


Motion Control Systems for Total Production Flexibility

Parker's electromechanical automation customers enjoy total production flexibility in their general and precision motion control applications. Complete packaged linear positioning systems, coupled to servo and stepper drives and controls, enable our customers to develop a complete motion solution with one partner. Parker provides the products for a wide range of motion needs- power, speed, travel, force-with easy to use controls designed to work on multiple control and communication platforms. Additionally, Parker's products can be easily customized to suit specific applications.

	Mechanical Actuators	Motors and Gearheads	Drives	Controls	IMH
Assembly machinery					
Pick and Place	\checkmark	√	\checkmark	\checkmark	√
Lifting	 ✓ 	 ✓ 	 ✓ 	 ✓ 	
Transfer machinery	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Automotive industry					
Body shop	~	~	\checkmark	~	
Paintshop applications	 ✓ 	 ✓ 	 ✓ 	 ✓ 	√
Transfer machinery	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Packaging machinery					
Primary, secondary, tertiary	√	√	√	√	√
Handling machinery	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Food and Beverage processing made					
Processing machinery	√	 ✓ 	√	 ✓ 	
Packaging machinery	\checkmark	~	\checkmark	√	
Handling machinery	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Material handling systems					
Transfer systems	~	✓	\checkmark	~	~
Pick and place systems	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Material forming machinery					
Presses	~	~	~		~
Tube bending	~	✓	\checkmark	~	\checkmark
Die Casting	\checkmark	\checkmark	\checkmark		\checkmark
Injection Molding / Plastic Extrusion	\checkmark	\checkmark	\checkmark		\checkmark
Transfer Systems	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ePump (Variable Speed HPU)		\checkmark	\checkmark	\checkmark	
Machine tools					
High Speed Servo Spindles		\checkmark			
Loader/Unloader	\checkmark	\checkmark	\checkmark	\checkmark	
Palletizing/Transfer	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Rotary/Tilting Tables		\checkmark			
Door Systems	\checkmark	\checkmark	\checkmark	\checkmark	
Semiconductor machinery					
Front end processes	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Inspection machinery	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Packaging machinery	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Lithography	\checkmark	\checkmark	\checkmark	\checkmark	
Medical equipment					
Device manufacturing	\checkmark	✓	\checkmark	\checkmark	\checkmark
Product packaging and dispensing	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Scanning equipment	\checkmark	\checkmark	\checkmark		
Pumps and analyzers		\checkmark	\checkmark		
Entertaiment					
Theatre and studio automation	\checkmark	\checkmark	\checkmark	\checkmark	
Simulation and amusement rides	\checkmark	\checkmark	\checkmark		

Complete Range of Solutions

Literature

Servo Motors

 Gearboxes Controller Products

Motion Control Products

Drives

AC Drives and Motors Purpose Drives

- Compact Drives
- Modular Drives
- HMI
- Accessories AC Motors

DC Drives and Motors

- Digital DC Drives
- Analogue Converters
- HMI Accessories
- DC Motors

HA501079

Linear Actuators Toothed Belt Driven

- Actuators Screw Driven
- Actuators Linear Motor Driven

Actuators

Precision Technology

- Screw Driven Tables Linear Motor Driven Tables
- Linear Motors
- Linear Positioners
- Miniature
- Stages

Parker One Pneumatic A complete range of pneumatic system components

- Actuator Products
- Control Devices
- Air Preparation & Airline Accessories

Value Added Services

In addition to providing products and systems, Parker also provides a number of value added services to our customers:

- Programming and • commissioning services
- Power quality and energy surveys
- 24-hour support and service
- **Product repairs**
- **Product training**

Brochure for more information

Customization

Many automation applications cannot be solved with off the shelf products. Parker's products are designed to be versatile as well as easy to configure for the most of industrial and process applications. Some customers require solutions that can't be found in a catalogue, and Parker has the resources and expertise available to provide solutions:

- Custom motor designs
- Customized mechanical positioning systems
- **Customized control** functionality
- **Customized communication** solutions

System Solutions

Parker offers system design and manufacturing in two main categories:

Drive Systems

Complete AC and DC drive systems across a wide power range, from less than 1 kW to more than 2 MW. Systems typically include electrical enclosure, ancillary electronic equipment and full documentation. Commissioning and support services are standard.

Mechanical Systems

Parker has more than 20 years of experience in providing a variety of multiple axis mechanical positioning systems, complete with motors, drives and controls. Typical applications include material transfer and pick and place gantry systems. Additionally, Parker designs and builds custom precision (micron and submicron level) positioning systems, integrating precision bearing, feedback and drive systems, including Parker's range of linear servo motors. Each system ships complete with motors, drives and controls, and can include the programming and commissioning.

Drives

Servo Drives

Stepper Drives

DC Servo Drives

TPD-M

Motornet DC

Hi-Drive

638

ViX Servo

ViX Stepper

RTS

Markets and Applications

Product	Compax3	SLVD-N	TPD-M	Motornet DC	Hi-Drive	638	ViX Servo	ViX Stepper	RTS
Description	Intelligent Servo Drive	Compact Servo Drive	Triple Axis Servo Drive	Integrated Motor/ Servo Drive	Flexible Servo Drive	Servo Drive	Micro Servo Drive	Micro Stepper Drive	DC Servo Drive
Food, Pharma & Beverage									
Packaging Machines									
Material Forming									
Material Handling									
Factory Automation									
Life Science Diagnostic									
Automotive Industry / In-Plant									
Printing Industry									
Textile Machines									
Robotics									
Machines Tools									
Servo Hydraulic Pumps									

Key Features

Product	Key Features	
Compax3	 Simple system integration Fieldbus & Ethernet Communication Wide Power / Voltage Range Drives all motor types Supports most feedback devices 	 Standard IEC61131-3 programming Application software integrated Drive based safety Fast control loops for demanding applications
SLVD-N	 Miniature / Compact Servo Drive Optimized for centralized automation structures 	 Use for applications with low number of axis CANopen / EtherCAT communication Simple application based programming
TPD-M	 Triple Servo Axis per Unit (3 drives in 1 Unit) Optimized for centralized automation structures 	 Use for applications with high number of axis CANopen / EtherCAT communication Simple application based programming
Motornet DC	 Servo Electronics integrated into the motor Use in totally centralized automation structures Dramatically reduced control cabinet space 	 Reduced cabelling needs CANopen / EtherCAT communication Modular machine design
Hi-Drive	Simple programmingMultiple communication & feedback	
638	Simple programmingMultiple communication & feedback	
ViX Servo	Ultra compact housingLow voltage drive	
ViX Stepper	Ultra compact housingLow voltage drive	
RTS	Single / Three phase supplyBattery supply	Operates on DC motors with or w/o a tacho

Drives by Function

Product	Compax3	SLVD-N	TPD-M	Motornet DC	Hi-Drive	638	ViX Servo	ViX Stepper	RTS
Description	Intelligent Servo Drive	Compact Servo Drive	Triple Axis Servo Drive	Integrated Motor/ Servo Drive	Flexible Servo Drive	Servo Drive	Micro Servo Drive	Micro Stepper Drive	DC Servo Drive
Servo									
Stepper									
DC Drive									
Servo Motor									
Induction Motor									
Direct Drive Motors									
DC Motors									
Stepper Motors									
Absolute Feedback									
Low Voltage Drives									
110/230 VAC									
400/460 VAC									
Single Axis Technology									
Multi Axis Technology									
Integrated Motor/Drive									
Fieldbus Connectivity									
Ethernet Communication									
Standard Safety (STO)									
Advanced Safety									
IEC 61131-3 Programming									
Proprietary Programming									
Application Macros									

Associated Drives & Motors

							Drive				
			Compax3	SLVD-N	TPD-M	Motornet DC	Hi-Drive	638	ViX Servo	ViX Stepper	RTS
						and the second s					
	SMB / SMH		•	•	•		•	•	•		
	MB / MH	1		•			•		•		
	NX			•			•				
	EX	ten)		•							
	NV	alabers.					•				
	NK	200 St		•			•				
Motor	ѕкѡ					n/a					
	нкw										
	тк	8	•				•				
	SY										
	RS	یک میک میک میک									
	RX										
	AXEM	3 39									•

Intelligent Servo Drive Compax3

Overview

Description

Compax3 is Parker Hannifin's global servo drive. The drive series includes single and multi axis drives as well as hydraulic controllers. It features a power range from 1 to 110 kVA.

The servo drives are completely developed and manufactured in Germany. An additional Compax3 production site was established in the US. As a global servo drive controller, Compax3 is of course available all over the world. Service and support sites are located in the vicinity of all major industry locations - worldwide. The "Parker Authorised Distribution Partners" do play an important role in this context well-trained and experienced application and support specialists will provide the necessary professional support in any situation.

Features

Hardware

- Power range from 1 to 110 kW
- 1 encoder output / 1 encoder input
- 8 digital inputs /4 digital outputs
- 2 analog inputs (14 Bit)
- 2 analog outputs (8 Bit)
- Multiple fieldbus options
- Extensive safety technology

Technology Functions

- I10T10: Drive control via: velocity/torque control, step/direction input, encoder input
- I12T11: Positioning via digital I/Os, RS232/ RS485, absolute/incremental positioning, registration mark related positioning, electronic gearbox, dynamic positioning
- T30: Programming based on IEC61131-3 with CoDeSys
 - PLCOpen function modules
 - IEC61131-3 standard modules
- C3-specific function modules
- T40: T30 functionality + cam function
- Technology controller with integrated Motion
 PLC

Compax3 powerPLmC-C20

High Performance Servo Drive

Compax3S High Performance Servo Drive **Compax3F** High Performance Hydraulics Controller

Technical Characteristics - Overview

Device:	Curre	ent [A]	Supply voltage	Power
Compax3	I _{cont.}	I _{peak} (<5 s)		[kVA]
S025V2	2.5	5.5	1*	1.0
S063V2	6.3	12.6	230/240 VAC	2.5
S100V2	10	20	3 *	4.0
S150V2	15	30	230/240 VAC	6.0
S015V4	1.5	4.5		1.25
S038V4	3.8	9.0	3*	3.1
S075V4	7.5	15	3 400/480 VAC	6.2
S150V4	15	30	400/480 VAC	11.5
S300V4 (1)	30	60		25.0
H050V4	50	75		35.0
H090V4	90	135	3 *	70.0
H125V4	125	187.5	400/480 VAC	91.0
H155V4	155	232.5		109.0

⁽¹⁾ Operation with condenser module C4.

Device:	Current [A]		DC bus voltage
Compax3	I _{cont.}	I _{peak} (<5 s)	
M050D6	5	10	
M100D6	10	20	325 679 VDC
M150D6	15	30	(Rated voltage 560 VDC)
M300D6	30	60	

Compact Servo Drive - SLVD-N

Overview

Description

SLVD-N is the family of compact digital servo drives for brushless motors which, in addition to positioning applications with trapezoidal profile, electrical shaft, electronic cam, spindle orientation, simulator of stepper motor and torque control, holds a PLC inside able to talk to the most common industrial programming systems, giving a great freedom of use of the inputs and outputs. It also allows the development of additional configurations to the basis features of the drive, such as gains adjustment of the loop in relation to speed or space, torque monitoring used for tools etc.

The SLVD-N range is equipped with a serial interface RS422/RS485 allowing the operator to configure, monitoring, give commands to up to 32 units simultaneously. A CANbus interface is available both in communication mode and in real time mode with SBCCAN, DS301, DS402 protocols.

Typical applications:

- Packaging machines
- Pick & place systems
- General purpose machines

Features

- Torque/current/speed control
- · Advanced manager of torque limits
- Management of speed windows
- Positioner
- Electric shaft
- Electronic cam
- Controls the motor torque with the addition of speed control
- Virtual master
- Internal PLC programming according to IEC61131 (option)
- Configurable feedback
- Standard interface: RS422/485, CANopen
- Optional interface: EtherCAT
- Internal braking resistor
- Internal EMC filter for three phase power supply
- Safety: STO function optional

Power suppl	200230 VAC single/three phase (±10 %) 50-60 Hz (±5 %) - only TT/ TN networks				
Control supp	oly	24 VDC (-0/+	10 %)		
Overload		200 % for 2 s	5		
Operating temperature		045 °C			
Operating hu	imidity	<85 % non c	ondensing		
Altitude		1000 m asl with 1.5 % deratir every 100 m, up to 2000 m			
Protections		IP20			
International standards		CE, UL, cUL			
Model		ntinuous current [A]	Peak current [A]	Size	
SLVD1N		1.25	2.5		
SLVD2N		2.5	5	1	
SLVD5N		5	10	1	
SLVD7N		7	14		
SLVD10N		10	20		
SLVD15N		15	30	2	
SLVD17N		17	34		

Triple Axis Servo Drive - TPD-M

Overview

Description

TPD-M is a multi axis system where each power module can supply up to three servo motors. The base configuration consists of a common dc bus supply (PSU) and multiples TPD-M modules, connected through dc bus bars.

The modules are available as one, two or three axis versions. This makes the system very flexible. The TPD-M drive has been specifically designed for the Packaging OEM market but it can also be used in many other centralized automation structures which incorporate a large number of servo axes offering significant advantages.

- Packaging machines
- Material forming machines
- Textile machines
- Paper and converting lines
- Plastics machines
- Machines tools

Motion control functionality is performed by means of EtherCAT Real Time CoE (CAN over Ethernet) communication, CAN / CANopen DS402 communication.

Features

- The most compact multi-axis servo drive on the market
- Quick and simple wiring
- One, two or three axis versions
- Modular cooling
- Removable SD card
- Common DC bus connection
- Feedback: Resolver, Hiperface and EnDat interface, Hall sensors, rotary and linear encoders
- New feedback: Hiperface DSL interface ® Reduced cabling; only one cable connection between drive & motor
- Fieldbus: CANopen standard, EtherCAT - option

TPD Axis	Continuos current [A _{rms}]	Peak current A (≤ 2 s)
3 axis	2 + 2 + 2	4 + 4 + 4
5 8815	8 + 5 + 5	16 + 10 + 10
	2 + 2	4 + 4
2 axis	5 + 5	10 + 10
	8 + 8	16 + 16
1 axis	5/10/15/30	10/20/30/60

Servo Motor with Integrated Servo Drive - Motornet DC

Overview

Description

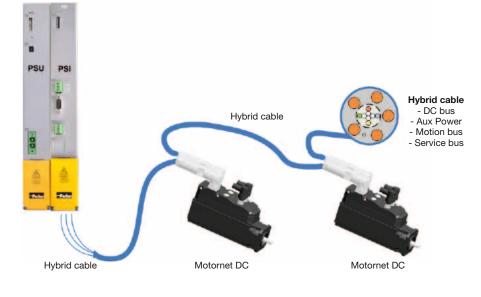
Motornet DC is a brushless servomotor system with integrated servo drive, supplied from a DC-bus voltage. Hybrid power, control and communications cables, a Power supply and Interface module complete the system and local I/O's can be connected directly to the motor.

Ideally suited to multi-axis applications where a number of motors are mounted in close proximity on the machine, Motornet DC allows a decentralized approach to motion control to be taken.

- Packaging Machines
- Rotary Tables
- Filling, bottling and capping machines

Motion control functionality is executed by means of EtherCAT communication or optionally CANopen DS402 communication.

Features


- Feedback: Resolver
- Fieldbus: EtherCAT
- 2 digital Inputs / 2 digital Outputs
- Protection level: IP64 / IP65 (optional)

General technical characteristics

230 VAC s	Size				
		MDC60	MDC70	MDC100	
Speed 3000 min ⁻¹	Stall torque [Nm]	1	2.5	6.5	
	Peak torque [Nm]	4	11	15	
Speed	Stall torque [Nm]	0.9	1.9	-	
6000 min ⁻¹	Peak torque [Nm]	4	7	-	
Inertia witho	out brake [10 ⁻³ kgm ²]	0.0302	0.1	0.504	

400 VAC s	upply	Size					
		MDC60	MDC70	MDC100			
Speed	Stall torque [Nm]	1	2.6	7.5			
3000 min ⁻¹	Peak torque [Nm]	4	11	26			
Speed	Stall torque [Nm]	-	-	5.7			
5200 min ⁻¹	Peak torque [Nm]	-	-	15			
Speed	Stall torque [Nm]	0.9	2.2	-			
6000 min ⁻¹	Peak torque [Nm]	4	7	-			
Inertia witho	ut brake [10 ⁻³ kgm ²]	0.0302	0.1	0.504			

Typical System Architecture

Flexible Servo Drive - Hi-Drive

Overview

Description

Hi-Drive is a fully digital drive for brushless motors with currents from 2 to 450 A and operating from 230 VAC or 480 VAC supplies. Hi-Drive is able to control induction motors; its target market is where high precision, accuracy, performance, fieldbus connectivity and custom applications are required.

Hi-Drive features several built-in motion control functions, including current, torque and speed control, positioning with trapezoidal profiles, digital lock with variable ratio and phase correction, electronic cam, real-time mode, S-ramp positioning, homing functions and position capture.

An axis card with Power PC 400 MHz micro processor which is able to control up to 32 interpolated axes via CANopen DS402, further enhances the Hi-Drive functionality.

The Hi-Drive series is suited for simple as well as extremely sophisticated applications such as: Printing machines, wood and metal working machines, feeders, palletizers, applications with different interpolated axes and robots.

Technical Characteristics - Overview

Device	Nominal current	Peak current	Peak current time	Frame size
	[A]	[A]	[s]	
HID2	2	4		
HID5	5	10		
HID8	8	16		1
HID10	10	20		
HID15	15	30	2	
HID16	16	32		2
HID25	25	50		2
HID35	35	70		3
HID45	45	90		5
HID75	75	135		4
HID100	100	180	3	5
HID130	130	234		5
HID250	250	375	4.5	6
HID450	450	675	4.0	-

Features

- Current, torque and speed control
- Positioner with trapezoidal profile and S-ramps
- Digital lock with variable ratio and phase correction
- Electronic cam
- Configurable feedback input
- · Configurable second encoder input
- Fieldbus RS232, RS422/485, SBCCan, EtherCAT, CANopen DS402
- DC bus connection to clamping board is possible (mono or three-phased)
- Built-in braking resistor (to 45 A)
- Safety relay optional CAT.3 EN 954-1
- Built-in EMI filter (to 130 A)
- Built-in three-phased line choke (75...55 A)

Servo Drive - 638 Series

Overview

Description

638 series servo drives are suitable for all servo applications, from simple speed or current control to most complex positioning applications. The processor of 638 series servo drives gives a rapid response time to the control circuits of 105 μs. Numerous expansion slots allow 638 series servo drives to reach a high degree of versatility, opening access to a wide variety of fieldbus communication and feedback sensors options.

Features

- Integrated motion controller
- 230 or 400 VAC direct power supply
- STO: Safety torque off in accordance with EN13489-1 Category 3, Performance Level d and EN1037 as standard
- Ultra-fast control loops (105 µs)
- Embedded PLC functions
- Programmable electronic cam
- 3 configurable trajectory generators
- Multi-axis synchronization through process bus
- Numerous fieldbuses options
- Hiperface and SSI encoder inputs options
- Optional flash memory chip for data storage
- Simple commissioning and programming Software

638 Servo drives	
Supply voltage	1*230 VAC (±10 %), 50 - 60 Hz 3*230 VAC (±10 %), 50 - 60 Hz 3*400/480 VAC (±10 %), 50 - 60 Hz
Permanent current [Arms]	115
Peak current [A]	230
Overload	200 % during 5 s
Operating temperature	040 °C
Humidity	< 85 % relative humidity non-condensing
Altitude	1000 m (1 % derating per 100 m up to 4000 m)
Product enclosure rating	IP20

Micro Servo Drive - ViX

Overview

Description

The freely-programmable, intelligent ViX servo drive delivers high levels of functionality and flexibility in programmable motion control. With an output in the 250-500 VA power range, ViX uses field-oriented digital control technology, to give enhanced dynamic performance with improved efficiency. Housed within an extremely compact case, ViX is suitable either for direct panel mounting or for attachment to a standard DIN rail.

The ViX drive is produced in two versions having continuous current ratings of 2.5 A and 5 A at motor bus voltages up to 80 V. A peak current capability of three times the continuous rating provides an outstanding acceleration performance. The device offers the choice of either resolver or encoder feedback (user selectable). To assist with initial commissioning, the drive can correct most motor and feedback wiring errors automatically

Features

- Fully digital design
- Field-oriented control for improved dynamic performance
- Panel or DIN rail mounting
- 2.5 A & 5.0 Arms
- 80 V DC Bus
- Built-in controller using Parker's proven EASI code
- Powerful EASI-V front-end software
- Programmable resolution
- Optional CANopen/RS485 interface
- Automatic standby current reduction
- Compact size
- Compatible with Parker servo motors

Device	Continuous current [Arms]	Peak current [A] (<2 s)	Interface	Supply voltage [VDC]
ViX250-AE	2.5	7.5	analog	24 & 2480
ViX500-AE	5	15	analog	24 & 4880
ViX250-AH	2.5	7.5	High Res	24 & 2480
ViX500-AH	5	15	analog	24 & 4880
ViX250-IE	2.5	7.5	Easi Code	24 & 2480
ViX500-IE	5	15	Lasi Coue	24 & 4880
ViX250-IH	2.5	7.5	High Res	24 & 2480
ViX500-IH	5	15	Easi Code	24 & 4880
ViX250-CE	2.5	7.5	CANopen	24 & 2480
ViX500-CE	5	15	CANopen	24 & 4880
ViX250-CH	2.5	7.5	High Res	24 & 2480
ViX500-CH	5	15	CANopen	24 & 4880

Micro Stepper Drive - ViX

Overview

Description

The award-winning ViX intelligent digital servo drive from Parker Hannifin has now been joined by a high-performance microstep version. Like its servo equivalent, the ViX microstep drive uses field-oriented digital control technology to give enhanced dynamic performance with improved efficiency. Housed within an extremely compact case, ViX is suitable either for direct panel mounting or for attachment to a standard DIN rail using an optional adaptor. The ViX microstep drive is produced in two versions having current ratings of 2.8 A and 5.6 A RMS at motor bus voltages up to 80 VDC. User resolution is freely programmable between 400 and 51 200 steps/rev. Regardless of the programmed resolution, the motor always operates at maximum resolution for optimum smoothness over the entire speed range. The power stage features full PWM control for accurate microstepping performance.

- Fully digital design
- Field-oriented control for improved low-speed performance
- Panel or DIN rail mounting
- 2.8 A & 5.6 A (rms)
- Up to 80 V DC bus
- Built-in controller using Parker's proven EASI code
- Powerful front-end software
- Fully-programmable resolution, up to 51 200 increments/rev
- Optional CANopen / RS485 interface
- Automatic standby current reduction
- Compact package
- Compatible with Parker high performance stepper motors

Device	Continuous current [A _{rms}]	Peak current [A] (<2 s)	Interface	Supply voltage [VDC]		
ViX250-IM	2.8	4	Step+	24 & 2480		
ViX500-IM	5.6	8	Direction	24 & 4880		
ViX250-CM	2.8	4	CANopen	24 & 2480		
ViX500-CM	5.6	8	CANOpen	24 & 4880		

DC Servo Drive - RTS

Overview

Description

The RTS servo amplifiers are designed for driving DC servo motors and are available in ratings up to 6.5 kW.

These products enable speed control of DC motors with or without tachometers.

They integrate main supply, auxiliary supply and braking resistor circuits in a compact package.

Features

- Battery, single-phase or three-phase power supply
- U-RI or tachometer control
- Integrated braking resistor
- Full protecting features
- High compactness
- Panel or rack mounting
- 3U Eurocard

RTS Series	
Power supply	Single phase, three phase or battery
Nominal current	340 A
Peak current	1080 A
Operating Temperature	040 °C (derate by 35 % per 10 °C >40 °C to 60 °C max.)
Altitude	1000 m (derate by 10 % >1000 m per 1000 m to 4000 m max.)
Protection	IP00, IP20 for versions with covering cap

Motors

Servo Motors

Spindle Motors

Stepper Motors / DC Servo Motors

MB / MH

NX

EX

NV

NK

SKW

HKW

ΤK

SY Stepper Motors

RS

RX

AXEM

Markets and Applications

													Mar	kets	
Product		Description	Food, Pharma & Beverage	Packaging Machines	Material Forming	Material Handling	Factory Automation	Life Science Diagnostic	Automotive Industry / In-Plant	Printing Industry	Textile Machines	Robotics	Tooling Machines	Servo Hydraulic Pumps	
SMB / SMH	1	Low Inertia Servo Motor													
МВ / МН	100	Servo Motor													
NX	-	Low Cogging Servo Motor													
Motornet DC	S. S	Integrated Motor/ Servo Drive		•			•		•		•	•			
EX	ten?	Explosion Proof Servo Motor													
NV	alants.	High Speed Servo Motor													
NK		Frameless Servo Motor						•				-	•		
SKW		Frameless Spindle Motor													
нкw	Ş	Frameless AC Brushless Motor													
тк	9	Frameless Servo Motor													
SY Stepper		2-Phase Stepper Motor													
RS		High Performance DC Servo Motor													
RX		DC Servo Motor													
АХЕМ	000	Pancake DC Servo Motor													

void age of the sector of t											
 High dynamical Option: Brake Platform for customization Multiple feedback devices Option: Brake Platform for customization High dynamical Option: Brake Platform for customization Wultiple feedback devices Stroot Inctation High dynamical Option: Brake Platform for customization High dynamical Option: Brake Platform for customization Wultiple feedback devices Stroot Inctation High torque density Low cogging Option: sensorless Servo Electronics integrated into the motor Use in total de-centralized automation structures Explosion proof design / ATEX Flameproof by UL Smooth rotation Low vibration Low vibration Low cogging High accuracy balanced Hollow shaft Direct drive Simple 2-phase design Simple 2-phase design Simoth at low speed 	Pulp & Paper	Renewable Energy	Aerospace	Radiation Hardend	Marine	Continuous Process	Hazardous / Ex Environment	Simulation / Testing	Mobile Hybrid Solutions	Key Features	
 Platform for customization Multiple feedback devices Option: Brake Platform for customization Multiple feedback devices Platform for customization Multiple feedback devices Platform for customization High dynamical Nultiple feedback devices Platform for customization High torque density Medium inertia Option: sensorless Servo Electronics integrated into the motor Use in total de-centralized automation structures Compact, robust Flameproof by UL Smooth rotation Low vibration High torque density Compact, robust Smooth rotation Low vibration High torque density High torque density Use vibration Low vogging High torque density Direct drive Simoeth rotation High speed (up to 50000 min') High torque driest drive (310 to 22000 Nm) Direct drive 										High dynamical	Option: Brake
 High dynamical Low inertia Multiple feedback devices Simoch rotation High torque density Medium inertia Option: Brake Platform for customization High torque density Medium inertia Option: sensorless Servo Electronics integrated into the motor Use in total de-centralized automation structures Explosion proof design / ATEX Flameproof by UL Somoth rotation High accuracy balanced High accuracy balanced High speed Compact / reduced weight Direct drive Somoth rotation Low cogging Hollow shaft High speed Direct drive 											
Image: Serve Electronics Integrated into the motor • Option: Brake • Platform for customization Image: Serve Electronics Integrated into the motor • High torque density • Medium inertia Image: Serve Electronics Integrated into the motor • Serve Electronics Integrated into the motor • Reduced cabelling needs Image: Serve Electronics Integrated into the motor • Use in total de-centralized automation structures • Compact, robust Image: Serve Electronics Integrated into the motor • Explosion proof design / ATEX • Compact, robust Image: Serve Electronics Integrated into the motor • Smooth rotation • Low vibration Image: Serve Electronics Integrated into the motor • Serve Electronics Integrated into the motor • Compact, robust Image: Serve Electronics Integrated into the motor • Use in total de-centralized automation structures • Compact, robust Image: Serve Electronics Integrated into the motor • Use intotal de-centralized automation • Low vibration Image: Serve Electronics Integrated into the motor • Smooth rotation • Low vibration • Low vibration Image: Serve Electronics Integrated into the protein structures • Smooth rotation • Low vibration • Low vibration Image: Serve Electronics Integrated into the protein structures • Compact design	_								_	Multiple feedback devices	
Image: Serve Electronics integrated into the motor • High torque density Image: Serve Electronics integrated into the motor • Reduced cabelling needs Image: Serve Electronics integrated into the motor • Reduced cabelling needs Image: Serve Electronics integrated into the motor • Reduced cabelling needs Image: Serve Electronics integrated into the motor • Reduced cabelling needs Image: Serve Electronics integrated into the motor • Reduced cabelling needs Image: Serve Electronics integrated into the motor • Reduced cabelling needs Image: Serve Electronics integrated into the motor • Reduced cabelling needs Image: Serve Electronics integrated into the motor • Reduced cabelling needs Image: Serve Electronics integrated into the motor • Reduced cabelling needs Image: Serve Electronics integrated into the motor • Reduced cabelling needs Image: Serve Electronics integrated into the motor • Serve Electronics integrated into the motor Image: Serve Electronics integrated into the motor • Serve Electronics integrated into the motor Image: Serve Electronics integrated into the motor • Low vibration Image: Serve Electronics integrated into the motor • Low vibration Image: Serve Electronics integrated into the motor • Very compact / reduced weight </td <td></td> <td>Option: Brake</td>											Option: Brake
 Smooth rotation High torque density Medium inertia Option: sensoriess Servo Electronics integrated into the motor Use in total de-centralized automation structures Explosion proof design / ATEX Flameproof by UL Compact, robust Explosion proof design / ATEX Flameproof by UL Smooth rotation Low cogging High torque density Medium inertia Compact, robust Explosion proof design / ATEX Flameproof by UL Smooth rotation Low cogging High torque density Compact, robust Compact / reduced weight Frameless design Compact design Hollow shaft Hollow shaft High speed (up to 50000 min⁻¹) Hollow shaft Frameless design High number of poles: 24 to 120 Direct drive Simple 2-phase design Direct drive Smooth at low speed 											
 Smooth rotation High torque density Medium inertia Option: sensoriess Servo Electronics integrated into the motor Use in total de-centralized automation structures Explosion proof design / ATEX Flameproof by UL Compact, robust Emergination Low cogging High torque density Medium inertia CoNopen / EtherCAT communication Compact, robust Emergination Emer											
Image: Series of the motor • Medium inertia Image: Series of the motor • Servo Electronics integrated into the motor • Reduced cabelling needs Image: Series of the motor • Servo Electronics integrated into the motor • Reduced cabelling needs Image: Series of the motor • Use in total de-centralized automation structures • CANopen / EtherCAT communication Image: Series of the motor • Explosion proof design / ATEX • Compact, robust Image: Series of the motor • Explosion proof design / ATEX • Compact, robust Image: Series of the motor • Explosion proof design / ATEX • Compact, robust Image: Series of the motor • Explosion proof design / ATEX • Compact, robust Image: Series of the motor • Explosion proof design / ATEX • Compact, robust Image: Series of the motor • Explosion proof design / ATEX • Low vibration Image: Series of the motor • Smooth rotation • Low vibration Image: Series of the motor • Smooth rotation • User of the motor Image: Series of the motor • Compact design • Hollow shaft Image: Series of the motor • Compact design • Hollow shaft Image: Series of thigh tomote of poles: • High number of po											High torgue density
Image: Construct of the construction of the construct of the motor Servo Electronics integrated into Reduced cabelling needs Image: Construct of the construct of the motor Use in total de-centralized automation structures CANopen / EtherCAT communication Image: Construct of the construct					100					Low cogging	
Servo Electronics integrated into the motor • Reduced cabelling needs • CANopen / EtherCAT communication Use in total de-centralized automation structures • CANopen / EtherCAT communication Explosion proof design / ATEX • Flameproof by UL • Compact, robust Smooth rotation • Low cogging • Low vibration • High torque density Hollow shaft • Hollow shaft • Frameless design • Smooth rotation • Low cogging • Very compact / reduced weight • Direct drive Compact design • High speed • Watercooled • High speed (up to 50000 min ⁻¹) Hollow shaft • High torque direct drive (310 to 22000 Nm) • High number of poles: 24 to 120 • Direct drive Object drive • Robust • Simple 2-phase design • Smooth at low speed											
Image: Second											Reduced cabelling needs
Image: Second											_
Image: Second											
Image: Second											
 Finisher of by OL Smooth rotation Low vibration High accuracy balanced Hollow shaft Frameless design Hollow shaft High number of poles: 24 to 120 Direct drive (310 to 22000 Nm) Direct drive Direct drive Simple 2-phase design Smooth at low speed 											Compact, robust
Image: Solution of the second of the seco											
Image: Second Stress											
Hollow shaft Very compact / reduced weight Smooth rotation Low cogging Compact design Hollow shaft High speed Watercooled High speed High number of poles: 24 to 120 High torque direct drive (310 to 22 000 Nm) Direct drive Robust Simple 2-phase design Smooth at low speed											High torque density
 Frameless design Direct drive Smooth rotation Low cogging Compact design Hollow shaft High speed Watercooled High number of poles: 24 to 120 Direct drive Direct drive Direct drive Simple 2-phase design Smooth at low speed 											
Image: Signed state in the											Very compact / reduced weight
Image:											Direct drive
Image: Sector of the sector											
Image: Second											
Image: Section of the section of th										-	Hollow shaft
Image: Second										High speed	
Image: Simple 2-phase design 24 to 120 Image: Direct machine integration Direct machine integration Image: Direct dire										Watercooled	
Image: Constraint of the state of the s										Hollow shaft	High number of poles:
 High torque direct drive (310 to 22 000 Nm) Direct machine integration Direct drive Direct drive Direct drive Direct drive Direct drive Simple 2-phase design Smooth at low speed 										Frameless design	
 Robust Simple 2-phase design Compact design Smooth at low speed 										High torque direct drive	_
Compact design Smooth at low speed											
										Simple 2-phase design	
High dynamic Long life time										Compact design	Smooth at low speed
										High dynamic	Long life time
Compact design Low speed smoothness										Compact design	Low speed smoothness
High dynamic Long life time										High dynamic	Long life time
Ultra compact housing Low speed smoothness										Ultra compact housing	Low speed smoothness
No cogging Robust										· · · · · ·	

Main Functions

Product		Description	Low Inertia	Low Cogging	High Speed	Direct Drive	Resolver	Encoder	Absolute Feedback	Sensorless Option	Brake Option	Kit Option	Hollow Shaft Option	Water Cooling Option
SMB / SMH	0-	Low Inertia Servo Motor						•		•	•	•		
МВ / МН	1.00	Servo Motor									•			
NX	5	Low Cogging Servo Motor									•			
Motornet DC	and the second s	Integrated Motor/ Servo Drive	•								•			
EX	ten?	Explosion Proof Servo Motors												
NV	alasis.	High Speed Servo Motor												
NK		Frameless Servo Motor									•			
SKW		Frameless Spindle Motor												
нкw	S	Frameless AC Brushless Motor												
тк	9	Frameless Servo Motor		•		•		•				•	•	•
SY		2-Phase Stepper Motor												
RS		High Performance DC Servo Motors												
RX		DC Servo Motor												
AXEM	20 0	Pancake DC Servo Motor		•				•		•	•			

Integrated Electronics	Customization Platform	Explosion Proof		Speed [min ⁻¹]		Torque [Nm]
	•		7500	-	17	-
			10000		285	
			8900	-	64	
			6000	-	8	1
			8000		35	
			17000		11.5	1
			8000		72	
			12000		24.4	-
			50000		1800	
			835	1	21000	
			800	I	13	• • • • • • • • • • • •
			3000	-	13	• • • • • • • • • • • • • • • • • • •
			3000	•	8	I
			4800	-	20	

Low Inertia Servo Motors - SMB / SMH

Overview

Description

The SMB / SMH* Series of highly-dynamic brushless servo motors have been design to combine the cutting-edge technology of Parker Hannifin products with an extremely high performance.

Thanks to the innovative "salient pole" technology, the motor's dimensions are considerably reduced with significant advantages in terms of specific torque, overall dimensions and dynamic performance. Compared to traditional-technology brushless servo motors, the specific torque is approximately 30 % higher, overall dimensions are considerably reduced and, consequently rotor inertias are extremely low. Thanks to the high quality of Neodymium-Iron-Boron magnets, and also the encapslutation method used to fasten them to the shaft, the SMB/H motors can achieve very high acceleration and withstand high overloads without risk of demagnetisation or detachement of the magnets.

Specific applications for the SMB/H Series include all types especially those for the packaging and handling industry, and all those applications where very high dynamic performances and very low inertias are required.

Features

- High number of feedback options
- Customised windings/voltages
- Increased Inertia option
- Multiple connection options

Application

- Food, Pharma & Beverage
- Packaging Machines
- Material Forming
- Material Handling
- Factory Automation
- Life Science Diagnostic
- Automotive Industry / In-Plant
- Printing Industry
- Textile Machines
- Robotics
- Servo Hydraulic Pumps

Motor Type	Permanent magnets synchronous servomotor
Rotor Design	Rotor with surface rare earth magnets
Number of poles	10 for SM_ 42 8 for SM_ 60-82-100-115-142
Power Range	0.2 – 5.3 kW
Torque Range	0.35 – 17 Nm
Speed Range	0 – 7500 min ⁻¹
Mounting	Flange with smooth holes
Shaft End	Plain keyed shaft Plain smooth shaft (option)
Cooling	Natural ventilation
Protection Level (IEC60034-5)	IP64 IP65 (option)
Feedback sensor	Resolver Absolute Endat or Hiperface Incremental Encoder
Other options	Brake Thermal protection (PTC for SMB and KTY for SMH) Increased inertia
Marking	CE / UL
Voltage Supply	230 / 400 VAC other voltage uder request
Temperature Class	Class F
Connections	Connectors Flying cables Terminal Box (see table option for combination)

^{*} SMB: for Drives TPD-M, SLVD-N, TWIN-N, SPD-N, Hi-Drive SMH: for Drive Compax3

Servo Motor - MB / MH

Overview

Description

The MB / MH ⁽¹⁾ series caters for torques in the range of 0.2 to 285 Nm, speeds up to 10000 min⁻¹ and includes a total of 75models available across 6 frame sizes.Thanks to the high quality and performance of the Neodymium-Iron-Boron magnets, and also the encapsulation method used to fasten them to the shaft, the MB / MH series of motors can achieve very high accelerations and withstand high overload without the risk of demagnetisation or detachment of the magnets.

Furthermore, shaft and flange size flexibility on all models provides the user with the possibility to optimise their motor selection for any given application.

Adequate mechanical over-sizing, low inertia in an extrastrong mechanism and a broad range of models permits the application of the MB / MH series in all fields where high dynamic performance and utmost reliability are crucial features.

Typical applications include any type of automatic machinery, especially in the product packaging and handling industry, and wherever the demand exists for axis speed and position synchronisation.

Features

- Large set of feedback option
- Customization
- Increase inertia option
- ATEX certification for MB/MH105/145
- Options
 - Flying cables
 - Terminal box (power and resolver)
 - External encoder
 - Increased inertia
 - Brake
 - Feedback resolver/incremental/
 - SinCos/absolute encoder • Thermal protection (PTC for MB and KTY for MH)
 - Mermai protection (FTC
 Second shaft

Application

- Food, Pharma & Beverage
- Packaging Machines
- Material Forming
- Material Handling
- Factory Automation
- Life Science Diagnostic
- Automotive Industry / In-Plant
- Printing Industry
- Textile Machines
- Robotics
- Servo Hydraulic Pumps

Technical Characteristics - Overview

Motor Type	Permanent magnets synchronous servo motor
Rotor Design	Rotor with surface rare earth magnets
Power supply	230 VAC or 400 VAC
Operating temperature	-10/+40 °C
Number of poles	4 for M_ 56-70 8 for M_ 105-145-205-265
Power Range	0.0567 kW
Torque Range	0.2285 Nm
Speed Range	010 000 min⁻¹
Mounting	Flange with smooth holes B14, B3 option
Shaft End	Plain keyed shaft Plain smooth shaft (option)
Cooling	Natural ventilation Self-ventilation (option for size 105-145-205) Forced Ventilation (option for size 105-145-205) Water cooled (option for size 145)
Protection Level (IEC60034-5)	IP64 IP65 (option)
Feedback sensor	Resolver Absolute Endat or Hiperface Incremental Encoder
Voltage Supply	230 / 400 VAC
Temperature Class	Class F
Connections	Connectors Flying cables Terminal Box (see table option for combination)
Marking	CE
Standards In compliance with:	73/23/CEE e 93/68/CEE EN60034-1 EN60034-5 EN60034-5/A1 EN60034-9 EN60034-14

⁽¹⁾ MB: for Drives TPD-M, SLVD-N, Twin-N, SPD-N, Hi-Drive / MH: for Drive Compax3

Low Cogging Servo Motor - NX Series

Overview

Description

NX Series brushless servomotors from Parker combine exceptional precision and motion quality, high dynamic performance and very compact dimensions. A large set of torque / speed characteristics, options and customization possibilities are available, making NX Series servomotors the ideal solution for most servosystems applications.

Advantages

- High precision and motion quality
- High dynamic performance
- Compact robust
- Large set of options and customization possibilities
- CE and UL marking certification available

Applications

- Life Science Diagnostic
- Tooling Machines
- Pulp & Paper
- Renewable Energy
- Aerospace
- Radiation Hardend
- Marine
- Continuous Process
- Mobile Hybrid Solutions

Features

- Mounting
 - Flange with clearance holes
- Shaft end
 - Plain smooth shaft (standard)
 - Plain keyed shaft (option)
- Cooling
 - Natural ventilation
 - Forced ventilation (NX860V only)
- Feedback sensors
 - Resolver (standard)
 - Absolute EnDat, Hiperface, Encoder
 - Posivex (only with Digivex Motion)
- Other options
 - Brake
 - Thermal protection (PTC, Thermo Switch or KTY)

Motor type	Permanent magnet servomotors	t synchronous
Rotor design	Rotor with concent magnets	trated-flux rare earth
Number of poles	10	
Power range	0.2 13.7 kW	
Torque range	0.45 - 64 Nm	
Speed range	0 7500 min ⁻¹	
Protection level (IEC60034-5)	IP64 (standard)IP65 (option)IP44 (ventilated version)	
Marking	CE	UL
Voltage supply	230 / 400 VAC	230 / 480 VAC
Temperature class (IEC60034-1)	• Class F	• Class A (NX1 – 2) • Class F (NX3 – 8)
Connections	 Connectors (standard) Flying cables (option) Terminal box (option) 	Connectors (NX1 – 8) Terminal box (NX860V)

Explosion Proof Servo Motor - EX Series

Overview

Description

EX series is a range of permanent magnet servo motor designed for use in explosive atmospheres. Featuring robust explosion-proof housings, EX motors are capable of bearing internal explosions with no risks of propagation to the neighbouring environment. Two versions are available, conforming with North American or European safety standards. EX servomotors are characterized by excellent motion quality, great acceleration / deceleration capabilities, and high torque output over a wide speed range. Various winding variants and numerous options are available to offer maximum flexibility.

- · Servo motors with explosion proof housings
- CE or UL versions available
- High dynamic performance
- Compact and robust
- Maintenance free

Applications

- Food, Pharma & Beverage
- Material Forming
- Printing Industry
- Hazardous / Ex Enviroment

Features

- **Mounting** Flange with clearance holes
- Mechanical interface
- Solid smooth shaft (standard)
- Solid shaft with key (option)
- Feedback sensors
 - 2 pole resolver (standard)
 - Absolute EnDat encoder (option)
 - Absolute Hiperface encoder (option)
- Thermal protection Thermoswitches and thermofuses integrated in the windings
- Other options Parking brake

Motor type	Permanent magnet synchronous motors	
Number of poles	10	
Torque range	1.75 to 35 Nm	
Speed range	2000 to 8000 min ⁻¹	
Marking	CE	UL
Voltage supply	230 / 400 VAC	230 / 480 VAC
Conformance	ATEX 94/9/EC Directive	UL 674 standard: Electric Motors and Generators for use in Division 1 Hazardous (Classified) Locations
	EN60079-0, EN60079-1 EN61241-0 and EN61241-1 standards	
Classification	II 2G Ex d IIB T4 IP64 (Gas)	Class 1, Division 1, Group C & D
	II 2GD Ex d IIB T4 IP65 Ex tD A21 IP65 T135°C (Gas and dust)	
Ingress protection	IP64 (standard)	IP65
level	IP65 (option)	
Connections	Cable glands	Tapped holes

High Speed Servo Motor - NV Series

Overview

Description

The NV series is a range of compact servomotors specially designed for high speed operation. NV motors are balanced with high accuracy to minimize the level of vibration and to increase their service life, making them particularly suitable for auxiliary spindle applications on machine tools. NV motors feature high dynamic performance and torque densities, while taking advantage of a large variety of options and customization possibilities. Available in kit version on request

Advantages

- High-Speed capabilities, precise and accurate positioning, high dynamic performance
- · Compact and robust
- Design flexibility

Application

• Tooling Machines

Features

- Mounting
 - Flange with clearance holes
- Mechanical interface
 Solid smooth shaft
- Feedback sensor
 - 2 pole resolver (standard)
 - Absolute encoders: EnDat, Hiperface, Posivex (options)
 - Without sensor (on request)
- Connections
 - Connectors
 - Terminal box (fan cooled motors)
- Options

Thermal protection (PTC, Thermo Switch or KTY)

Motor type	Synchronous permanent magnet servomotors
Poles number	10
Voltage supply	230 VAC or 400 VAC
Power range	0.7 12 kW
Torque range	0.4 11.5 Nm
Speed range	7000 17000 min ⁻¹
Ingress protection level (IEC60034-5)	IP64 (standard)IP65 (option)
Cooling method	Natural ventilation (standard)Fan cooling (NV860V)
Temperature class (IEC60034-1)	Class F

Frameless Servo Motor - NK Series

Overview

Description

Servo motor kit is an innovative and comprehensive approach enabling the complete integration of the motor in a simplified mechanical system. This approach ensures that the size constraints of the machine are utilized to maximum effect. This delivers a more accurate, reliable and robust solution than traditional construction methods. A complete range of products is available to meet the design needs of many different mechanical systems in a host of different applications.

Other more bespoke adaptations can be developed upon request.

Advantages

- Compact footprint and reduced weight of the mechanical systems
- Reduced cost
- Direct Drive: accurate and robust mechanics
- Complete and optimized solution including sensor, cooling system and drive
- Integration assistance
- Applications
- Tooling Machines

Frameless servomotors		
Low speed torque	0.4 42 Nm	
Max. speed	8000 min ⁻¹	
Max. constant power	0.25 7.7 kW	
Inertia	13 9200 kgmm ²	
Weight	0.422 17.445 kg	
Frameless servomotors with water cooling		
Low speed torque	3.4 72 Nm	
Max. speed	15000 min ⁻¹	
Max. constant power	4.7 30 kW	
Inertia	79 9200 kgmm ²	
Weight	0.8885 17.44 kg	

Frameless Spindle Servo Motor - SKW Series

Overview

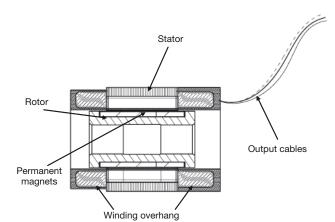
Description

SK motors are compact and highly dynamic permanent magnet synchronous servomotors for spindle applications up to 20 kW.

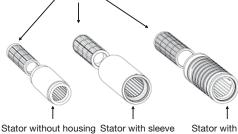
Delivered as separate components to be integrated into the mechanical structure of the machine, SK motors offer constant torque capabilities over a wide speed range.

Features

- Parker SK Series Kit Spindle Motors include
 a rotor with permanent magnets which can, on request, be mounted on customer's shaft
 - a wound stator which can, on request, be designed with a cooling jacket or integrated into customer's mechanics
- Kit solution leading to simplified mechanical designs
- High dynamic performance and power density: increased productivity and to reduced size compared to induction motors
- Cold permanent magnet technology: reduced heating in the bearings compared to induction motors, no dilatation effect
- Increased internal diameter compared to other solutions: increased rigidity and greater capacity for bar stock handling in automatic lathes
- Compatibility with cost effective sensorless drives from Parker


Applications

• Tooling Machines



Technical Characteristics - Overview

Motor Type	Permanent magnet synchronous motors
Power supply	3 ph - 400 VAC
Power range	up to 20 kW
Speed range	 up to 12000 min⁻¹
	 higher speeds on request
Insulation (CEI 60034-1)	Class F
Cooling	 Water cooling (standard)
	 Natural convection on request
Connections	2 m flying cables without connectors
Construction type	Individual components (rotor, stator, feedback sensor)

Rotor with permanent magnets

Stator without housing Stator with sleev (Standard) (on request) Stator with water cooling jacket (on request)

Frameless AC Brushless Motor - HKW Series

Overview

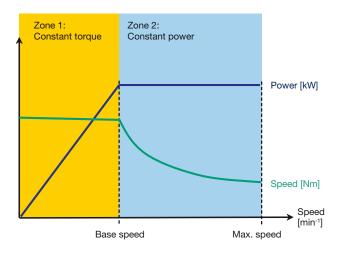
Description

HKW motors are high performance permanent magnet synchronous servomotors for spindle applications up to 230 kW.

Delivered as separate components to be integrated into the mechanical structure of the machine, HKW motors benefit from the use of field weakening, in order to achieve both high torque at slow speed, and very high maximum speed at constant power.

Applications

• Tooling Machines


Features

- Kit solution leading to simplified mechanical design
- Very high speed capabilities up to 50 000 min⁻¹
- Constant power operation up to 10 x base speed: no oversizing of the drive
- High dynamic performance and power density: increased productivity and reduced size compared to induction motors
- Cold permanent magnet technology: reduced heating in the bearings compared to induction motors, no dilatation effect
- · Compatibility with third-party drives
 - Siemens

Motor type	Permanent magnet synchronous motors
Type of construction	Individual components: rotor, stator and feedback sensor
Power supply	3 ph - 400 VAC
Power range	up to 230 kW
Speed range	up to 50 000 min ⁻¹
Insulation of stator winding according to CEI 60034-1	Class F
Ambiant temperature	40 °C maxi
Altitude	< 1000 m
Cooling	Water cooling (standard)
	Natural convection on request
Stator design variants	 Stator without housing (standard)
	• Stator housing on request, with or without water cooling circuit
Rotor design	Rotor without hub (standard)
variants	Rotor with hub on request
Connections	2 m flying cables without
	connectors

Frameless Servo Motor - TK Series

Overview

Description

Delivered as separate rotor and stator to be integrated into the mechanical structure of the machine, TK series torque motors lead to simplified designs, reduced costs, and increased accuracy.

TK series is distinguished from existing solutions by their exceptional robustness, making them particularly suited to harsh environments.

Benefiting from Parker's unprecedented know-how in the design and manufacture of torque motors, TK series can also be delivered as complete subassemblies including frame, cooling system, bearings, feedback sensor...

Advantages

- Simplified mechanical designs
- Reduced sizes and weights
- Reduced maintenance
- Increased rigidity and accuracy

Applications

- Material Forming
- Material Handling
- Tooling Machines
- Pulp & Paper

Features

- Mounting
 Tapped holes on rotor and stator periphery
- **Cooling** Water cooling (standard) or natural convection (available with derating, consult us)
- Thermal protection PTC and KTY probes fitted into the stator winding
- Feedback sensor Chosen depending upon mechanical conditions, required accuracy and drive specifics: resolver, sin/cos encoder...
- Electrical connections Flying cables without connectors, 2 m length

Shaft-heights	130 - 200 - 315 - 400 mm
Power supply	400 VAC three-phased
Torque	up to 21000 Nm
Stator winding's insulation according to CEI 60034-1	Class F

Stepper Motor - SY

Overview

Description

The stepper motors of the SY-series are two-phase steppers and are designed for industrial applications. Flying leads and terminal box versions are available and encoders can be ordered as optional items.

Features

- 1.8 degree 2 phase hybrid stepper motors
- Nema 23 , Nema 34 & Nema 42 frame sizes with 1-, 2- and 3-stack motor lengths
- Rated at IP55 as standard
- Option for: IP68 on terminal box version
- Option for: 200 or 500 line encoder
- Option for: Vacuum preperation to 10-6 Torr
- Holding brake available
- Rear shaft options
- Terminal box or flying leads
- Maximum holding torque 0.45 13 Nm
- Current per phase: 4.2 10 A (rms)
- Inductance per phase: 1 2.7 mH
- Rotor inertias: 12.5 1200 kgmm²

Туре	SY56	SY87	SY107
Maximum holding torque [Nm]	0.451.25	1.85.4	913
Current per phase (parallel) [Arms]	4.26.5	4.28.4	8.010
Inductance per phase [mH]	1.01.2	1.61.7	2.42.7
Rotor inertia [kgmm ²]	12.532.5	65195	8001200
Axial bearing loading [N]	80	180	400
Radial bearing loading [N]	150	280	650
Weight [kg]	0.61.35	1.72.85	7.29.8

High Performance DC Servo Motor - RS Series

Overview

Description

Using high energy magnets, RS DC motors combined with RTS drives are particularly suitable for applications which require a very compact solution or a high dynamic level.

Characteristics and advantages

- High performance characteristics
- Excellent low-speed functioning
- High compactness
- Very long service life
- Rare earth magnets
- Tacho, encoder resolver and brake in option

Features

- Shaft
 - RS1 to RS4: Smooth full shaft
 - RS5 and RS6: Full keyed shaft
- 2nd Shaft end
 - RS1 to RS3: possibility to mount standard tacho or encoder
 - RS5 and RS6: possibility to mount standard tacho, adaptation for encoder mounting in option
- Output cables 1 m without connector
- Options
 - Brake (RS2 to RS6)
 - Tachometer
 - Adaptation 2nd shaft end for encoder mounting (RS5 and RS6)

Motor type	DC motors with rare earth magnets	
Number of poles	4	
Protection degree	RS1 to RS4: IP40	
	RS5 and RS6: IP54	
Insulation	Class F	
Torque at low speed	0.0513 Nm	
Permanent current at low speed	1.5 28 A	
Rated voltage	20.7105 V	
Rated speed	20003000 min ⁻¹	
Rotor inertia	2.48300 kgmm ²	

Low-Cost DC Servo Motor - RX Series

Overview

Description

The RX DC motors, combined with RTS drives, provide an economical solution for any servo applications. They are particularly suitable for low power systems in clean atmospheres.

Advantages

- Excellent price/performances ratio
- Very low torque modulation
- High quality construction
- Very long service life
- 2nd shaft end for tacho and encoder mounting
- Tacho and brake as option

Applications

- Factory Automation
- Life Science Diagnostic

Features

- Shaft
 - RX1 and RX3: Smooth full shaft
 - RX5 and RX6: Full keyed shaft
- 2nd Shaft end
 - RX1 and RX3: possibility to mount standard tacho or encoder
 - RX5 and RX6: possibility to mount standard tacho, adaptation for encoder mounting in option
- Output cables 1 m without connector
- Options
 - Brake
 - Tachometer
 - Adaptation 2nd shaft end for encoder mounting (RX5 and RX6)

Motor type	CC Motors with rare ferrite magnets
Protection	 RX1 and RX3: IP40
degree	RX5 and RX6: IP54
Insulation	Class F

Pancake DC Servo Motor - AXEM Series

Overview

Description

The AXEM motor, with more than 2 million units produced, is one of the most widespread servo motors in the world. With its disk rotor, composed solely of copper and insulator the Axem motor achieves high dynamics and excellent regulation of motion at low speed, as well as silent and vibration-free functioning. It is robust, efficient, and low maintenance.

Advantages

- Very low speed modulation
- Exceptional regulation at low speed
- High dynamic characteristics
 low rotor inertia
- Silent and vibration-free functioning
- Maintenance free
- Disk rotor
- Protection: IP44
 - IP20 for ventilated models
- Class F insulation

Applications

- Factory Automation
- Life Science Diagnostic

Nominal torque	0.1419.2 Nm
Nominal current	6.444 A
Nominal voltage	14178 V
Nominal speed	3000, 4800 min ⁻¹
Inertia	297400 kgmm ²

Planetary Gearboxes

Precision Gearboxes PS / RS Series

Economic Gearboxes PE Series

PR / RS

PE

Precision Planetary Gearboxes PS / RS Series

Overview

Description

The Helical Planetary Gearboxes incorporate design enhancements to provide superior performance for the most demanding high performance applications. The PS / RS gearboxes incorporate dual angular contact bearings providing higher radial load capacities while maintaining high input speeds. The design enhancements comprise among others, needle bearings to ensure a longer lifetime. Internal design changes and optimized gearing geometries provide the basis for the universal mounting position.

Common mounting kits across multiple gear head lines promote quicker deliveries and ease of mounting to any servo motor.

Mounting to any servo motor is as easy as A-B-C (adapter, bushing, collet).

Features

- Higher radial load capacity: Angular contact output bearings
- Increased service life: Needle bearings
- Life time lubrication
- Universal Mounting Kits: Quicker deliveries and easier mounting
- High nominal torque and low backlash: Helical planetary gearing
- High stiffness: Integrated planetary gear head
- High wear resistance: Plasma Nitriting heat treating

Series	Unit	PS	RS
Gear geometry		Helical Planetary	Helical Planetary/ Spur Bevel
Туре		In-Line	Right Angle
Frame sizes	[mm]	60115	
Maximum input speed	[min ⁻¹]	up to	6000
Nominal torque	[Nm]	27230	13220
Radial force	[N]	>7500	
Life	[h]	20000	
Backlash	[arcmin]	up to <3	up to <4

Economical Planetary Gearheads - PE

Overview

Description

The PLE is the perfect economy alternative to the PS gearbox. This planetary gearbox was especially designed for all applications where a considerably low backlash is not of vital importance.

Features

- Excellent price/performance ratio
- Input speeds up to 8000 min⁻¹
- Low backlash
- High output torques
- PCS-2 system
- High efficiency (96 %)
- 22 ratios i=3...512
- Low noise
- High quality (ISO 9001)
- Any fitting position possible
- Simple motor fitting
- Life time lubrication
- Direction of rotation equidirectional
- Balanced motor pinion

Features	Unit	Division
Geometry		Planetary Gearheads
Туре		Inline
Drives sizes	[mm]	60, 90, 115
Maximum input speed	[min ⁻¹]	up to 13000
Nominal torque	[Nm]	260
Radial force	[N]	up to 2400
Service life	[h]	30 000
Backlash	[arcmin]	<8

Controller Products

Controller

HMI

I/Os

ACR9600

Interact Xpress HMI

Parker I/Os

IEC61131-3 Controller with Powerlink -ACR9640

Overview

Description

The ACR EPL family is Parker's premier standalone motion controller family, capable of controlling up to 16 axes of motion. Connectivity and communication features give the ACR EPL flexibility for use in a wide variety of machine architectures. The ACR EPL excels as a standalone machine and motion controller, interfacing with a PC or working alongside a PLC. A powerful DSP makes the ACR EPL an outstanding multitasking servo controller. The ACR EPL includes easy-to-use project-development tools that enable fast, efficient application creation and maintenance. The ACR EPL is the solution for standalone applications requiring industry-leading performance in an affordable and easy-to-use package.

The ACR9640 is a compact, cost-effective, EPL-only controller including Ethernet, USB and an integrated 2-port hub for ETHERNET Powerlink connections. I/O can be added using CANopen or by utilizing the inputs and outputs on the EPL drives.

ETHERNET Powerlink expands the ACR EPL family by adding a real-time motion controller over standard Ethernet hardware. The high speed digital communications network enhances machine performance and configuration possibilities while reducing set-up time and installation complexity.

Features

- Control of 16 ETHERNET Powerlink drives
- 10/100 Base-T Ethernet
- USB 2.0
- EtherNet/IP compatibility
- CANopen expansion I/O
- CE (EMC & LVD), UL and cUL Recognized
- Multitasking of up to 24 simultaneous programs
- Interpolation of 8 axes in any combination
- IEC61131-3 programming with structured text, continuous function chart and ladder diagram

	ACR9640
Power supply	24 VDC, 1A
Processor	32 bit DSP @150 MFLOPS/75 Hz
User memory	2 MB flash-based
Motion bus	ETHERNET Powerlink: 16 axes
Operating system	Multi-tasking RTOS
Ethernet	TCP/UDP, ETHERNET/IP
CANopen	DS401 protocol

IEC61131-3 Controller with CANopen - C3 *power*PL*m*C-E30

Overview

Description

Compax3 *power*PL*m*C is a control system for combined PLC, motion and visualization tasks. CANopen combines the bus components with the CANopen master "Compax3 *power*PL*m*C". The power range of commands based IEC61131-3 is available for control tasks.

Programming takes place in the "CoDeSys" highpower programming system via Ethernet. The implementation of the motion tasks is supported by PLCopen function modules.

Features

- 32 Bit RISC Processor: <100 µs for 1000 IL commands
- CANopen multi-axis communication
- Simple integration of the servo axes via the Drive Interface
- Ethernet:
 - Programming interface,
 - Remote diagnostics via Internet/Intranet
 - Process visualization,
 - System integration
- Programmable based on IEC61131-3 / PLCopen
- CoDeSys V2.3 development tool
- PLC functionality
 - 4 real-time task types: free-running, cyclical, event-triggered (internal or external events)
 - Debugging, single step, watch function, log
 - Online program change

• PLC extensions offered by Parker:

- POP: Parker Operator Panel (MMI) from the 4-line display to the color touch screen
- PIO: Parker digital and analogue inputs/outputs modular extensions
- InteractXpress (HMI)

Platform	32 bit RISC processor 200 MHz	
Program memory	128MB Compact Flash card	
Data memory SDRAM / Data memory non volatile	16 MB / 32 kB (Retain)	
Controller features		
Processing time	<100 µs for 1000 IL rows	
Minimal cycle time	Typical 1 ms	
Programming and debugging		
Programming system	CoDeSys V2.3	
Programming languages	IL, SFC, FBP, ST, LD, CFC	
Visualization		
Locally on the programming system	Yes	
Web Server	Yes	
OPC Server	Yes	
Interfaces		
general	2x RS232	
Fieldbus options	 2 x CANopen Master DP - SLAVE (Profibus) Ethernet 10/100 MBauds TCP / UDP Modbus TCP/IP Server 	
Digital and analog inputs/outputs option	Any (depending on the number of axes) via PIO and CANopen	

Touchscreen HMI with Integrated Webserver -Interact Xpress

Overview

Description

Distributed HMI in a durable and affordable package

XPR PowerStation line offers a hardware/software solution that simplifies and cost-reduces distributed HMI applications. Available with a 6", 8", 10", 15" TFT panel mount touchscreen or new non-display system. XPR models are designed to optimize the performance, storage and connectivity features of Interact Xpress™ HMI software.

This CE-based workstations features the latest embedded processor technology supporting fanless operation, CompactFlash® storage, USB, serial and 100Base-T Ethernet connectivity.

Take full advantage of the web for; HMI design, publishing, runtime and support

Interact Xpress fully leverages the wide availability of web browsing software to enable distributed HMI software, remote support and application sharing on the internet and IP networks. Interact Xpress HMI applications are developed, edited, published and run in an HMI that is a web server, allowing users and OEMs to easily publish upgrades and applications to any global location with an internet connection and a web browser.

Interact Xpress combines a rich, graphical runtime interface with HMI development tools that can be accessed from either the HMI panel or any PC running Internet Explorer®.

Features

- Fanless operation
- More than 40 communication drivers
- Complex animation capabilities
- Alarm logging
- Sending email on alarms
- Recipes
- Real time trending
- PDF documents viewing
- Multi language support
- Screen templates

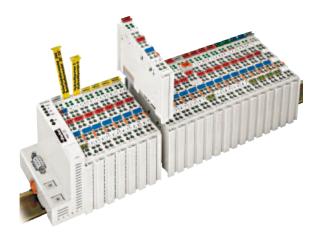
Display	262144 color TFT
Storage options	128 MB CompactFlash
Operating system	Windows CE
Ports	• 2 USB
	• RS232/422/485
	• 10/100 Base-T Ethernet
Power supply	24 VDC

Modular I/O - System - PIO

Overview

Description

Parker Hannifin's modular expandable bus terminal system uses electronic devices to capture a wide variety of control signals from field devices. Connections to the field level can be implemented quickly and reliably with PIO.


PIO offers the convenience of exceptionally simple installation. The individual modules can be installed and removed without any tools.

Different modules can be combined with each other within the bus terminal system.

Gold-plated contacts guarantee reliable connections between the individual modules. A conducting ground contact adds additional safety.

Features

- Fieldbus independent layout
- Easy to extend with additional modules
- Exceptionally compact design
- Intrinsically-safe contacts
- Maintenance free
- Mixed voltages can be combined
- Great flexibility ensures optimal adaptability in different applications
- Integrated input filter
- Opto-isolation
- Suitable for copper cables from 0.08 mm² to 2.5 mm²
- Error and status display (LED)
- Access options for simple signal test
- Short-circuit proof inputs
- Options for clear, unambiguous identification

PIO - Parker I/O-System		
Bus terminals	Digital and analog input and output terminals	
Fieldbus coupler (Standard and ECO version)	 CANopen PROFIBUS DeviceNet ETHERNET TCP/IP 	
Current via power contacts	max. 10 A	
Voltage isolation	500 V System / Supply	
Operating temperature	055 °C	
Enclosure rating	IP20	
Resistance to vibrations	in accordance with IEC 60068-2-6	
Resistance to impact	in accordance with IEC 60068-2-27	
EMC Interference immunity Interference emission	in accordance with EN 50082-2 (96) in accordance with EN 50081-2 (94)	
International Standards	CE, UL 508	

Parker's Motion & Control Technologies

At Parker, we're guided by a relentless drive to help our customers become more productive and achieve higher levels of profitability by engineering the best systems for their requirements. It means looking at customer applications from many angles to find new ways to create value. Whatever the motion and control technology need, Parker has the experience, breadth of product and global reach to consistently deliver. No company knows more about motion and control technology than Parker. For further info call 00800 27 27 5374.

AEROSPACE Key Markets

- Aircraft engines
- Business & general aviation
 Commercial transports
- Land-based weapons systems
- Military aircraft
- Missiles & launch vehicles
- Regional transports Unmanned aerial vehicles

Key Products

- Flight control systems
- & components • Fluid conveyance systems
- Fluid metering delivery
- & atomization devices
- Fuel systems & components
- Hydraulic systems & components
- Inert nitrogen generating systems
 Pneumatic systems & components
- Wheels & brakes

CLIMATE CONTROL

- Key Markets
- Agriculture
 Air conditioning
- Food, beverage & dairy
- Life sciences & medical
- Precision cooling
- Processing
- Transportation

Key Products

- CO² controls
 Electronic controllers
- Filter driers
- Hand shut-off valves
- Hose & fittings
- · Pressure regulating valves
- Refrigerant distributors
- Safety relief valves
- Solenoid valves

PNEUMATICS

Key Markets

Food & beverage

• Machine tools

Key Products

• Air preparation

• Grippers

Manifolds

· Compact cylinders

· Guided cylinders

Miniature fluidics

Rodless cylinders

· Rotary actuators

Tie rod cylinders

· Field bus valve systems

Pneumatic accessories

Pneumatic actuators & grippers

· Vacuum generators, cups & sensors

· Pneumatic valves and controls

Life science & medical

Packaging machinery

Transportation & automotive

Conveyor & material handling
Factory automation

Aerospace

• Thermostatic expansion valves

FILTRATION

Key Markets

Life sciences

Marine

• Oil & gas

Process

Food & beverage

Industrial machinery

• Mobile equipment

Power generation

Transportation

Kev Products

& systemsHydraulic, lubrication &

coolant filters

air generators

· Analytical gas generators

Condition monitoring

· Compressed air & gas filters

Engine air, fuel & oil filtration

Process, chemical, water

& microfiltration filters

SEALING & SHIELDING

Chemical processing

Key Markets

Aerospace

ConsumerEnergy, oil & gas

· Fluid power

Life sciences

Semiconductor

Transportation

Key Products

• Dynamic seals

· EMI shielding

· Elastomeric o-rings

· Extruded & precision-cut,

Homogeneous & inserted
 elastomeric shapes

Metal & plastic retained

composite seals
Thermal management

fabricated elastomeric seals

· High temperature metal seals

55

• Telecommunications

Military

General industrial

Information technology

Nitrogen, hydrogen & zero

ELECTROMECHANICAL

- Key Markets
- AerospaceFactory automation
- Food & beverage
- Life science & medical
- Machine tools
- Packaging machinery
- Paper machinery
- · Plastics machinery & converting
- Primary metalsSemiconductor & electronics
- Serniconductor
 Textile
- Wire & cable

Key Products

- AC/DC drives & systems
- Electric actuators
- Controllers
- Gantry robots
- Gearheads
- Human machine interfaces
- Industrial PCs
- Inverters
- Linear motors, slides and stages
 Precision stages
- Stepper motors
- Servo motors, drives & controls
- Structural extrusions

PROCESS CONTROL

Chemical & refining

Medical & dental

Microelectronics

· Power generation

Key Products

• Oil & gas

· Food, beverage & dairv

· Analytical sample conditioning

High purity gas delivery fittings,

· Instrumentation fittings, valves

· Process control manifolds

· Medium pressure fittings & valves

products & systemsFluoropolymer chemical delivery

valves & regulators

& regulators

fittings, valves & pumps

Key Markets

FLUID & GAS HANDLING Key Markets

- Aerospace
- Agriculture
- Bulk chemical handling
- Construction machinery
- Food & beverage
- Fuel & gas delivery
- Industrial machinery
- Mobile
- Oil & gas
- Transportation
- Welding

Key Products

- Brass fittings & valves
- Diagnostic equipment
- Fluid conveyance systems
- Industrial hose
- PTFE & PFA hose, tubing & plastic fittings
- Rubber & thermoplastic hose & couplings
- Tube fittings & adapters
- Quick disconnects

- HYDRAULICS Key Markets
- Aerospace
- Aerial lift
- Agriculture
- Construction machinery
- ForestryIndustrial machinery
- Mining
- Oil & das
- Power generation & energy
- Truck hydraulics

Key Products

- Diagnostic equipment
 Hydraulic cylinders
- & accumulators

Power take-offs

& couplings

Quick disconnects

Hydraulic motors & pumps
Hydraulic systems
Hydraulic valves & controls

Rubber & thermoplastic hose

Tube fittings & adapters

Parker Worldwide

Europe, Middle East, Africa

AE – United Arab Emirates, Dubai Tel: +971 4 8127100 parker.me@parker.com

AT – Austria, Wiener Neustadt Tel: +43 (0)2622 23501-0 parker.austria@parker.com

AT – Eastern Europe, Wiener Neustadt Tel: +43 (0)2622 23501 900 parker.easteurope@parker.com

AZ – Azerbaijan, Baku Tel: +994 50 2233 458 parker.azerbaijan@parker.com

BE/LU – Belgium, Nivelles Tel: +32 (0)67 280 900 parker.belgium@parker.com

BY – Belarus, Minsk Tel: +375 17 209 9399 parker.belarus@parker.com

CH – Switzerland, Etoy Tel: +41 (0)21 821 87 00 parker.switzerland@parker.com

CZ – Czech Republic, Klecany Tel: +420 284 083 111 parker.czechrepublic@parker.com

DE – Germany, Kaarst Tel: +49 (0)2131 4016 0 parker.germany@parker.com

DK – Denmark, Ballerup Tel: +45 43 56 04 00 parker.denmark@parker.com

ES – Spain, Madrid Tel: +34 902 330 001 parker.spain@parker.com

FI – Finland, Vantaa Tel: +358 (0)20 753 2500 parker.finland@parker.com

FR – France, Contamine s/Arve Tel: +33 (0)4 50 25 80 25 parker.france@parker.com

GR – Greece, Athens Tel: +30 210 933 6450 parker.greece@parker.com

HU – Hungary, Budapest Tel: +36 1 220 4155 parker.hungary@parker.com **IE – Ireland,** Dublin Tel: +353 (0)1 466 6370 parker.ireland@parker.com

IT – Italy, Corsico (MI) Tel: +39 02 45 19 21 parker.italy@parker.com

KZ – Kazakhstan, Almaty Tel: +7 7272 505 800 parker.easteurope@parker.com

NL – The Netherlands, Oldenzaal Tel: +31 (0)541 585 000 parker.nl@parker.com

NO – Norway, Asker Tel: +47 66 75 34 00 parker.norway@parker.com

PL – Poland, Warsaw Tel: +48 (0)22 573 24 00 parker.poland@parker.com

PT – Portugal, Leca da Palmeira Tel: +351 22 999 7360 parker.portugal@parker.com

RO – Romania, Bucharest Tel: +40 21 252 1382 parker.romania@parker.com

RU – Russia, Moscow Tel: +7 495 645-2156 parker.russia@parker.com

SE – Sweden, Spånga Tel: +46 (0)8 59 79 50 00 parker.sweden@parker.com

SK – Slovakia, Banská Bystrica Tel: +421 484 162 252 parker.slovakia@parker.com

SL – Slovenia, Novo Mesto Tel: +386 7 337 6650 parker.slovenia@parker.com

TR – Turkey, Istanbul Tel: +90 216 4997081 parker.turkey@parker.com

UA – Ukraine, Kiev Tel +380 44 494 2731 parker.ukraine@parker.com

UK – United Kingdom, Warwick Tel: +44 (0)1926 317 878 parker.uk@parker.com

ZA – South Africa, Kempton Park Tel: +27 (0)11 961 0700 parker.southafrica@parker.com **North America**

CA – Canada, Milton, Ontario Tel: +1 905 693 3000

US – USA, Cleveland Tel: +1 216 896 3000

Asia Pacific

AU – Australia, Castle Hill Tel: +61 (0)2-9634 7777

CN – China, Shanghai Tel: +86 21 2899 5000

HK – Hong Kong Tel: +852 2428 8008

IN – India, Mumbai Tel: +91 22 6513 7081-85

JP – Japan, Tokyo Tel: +81 (0)3 6408 3901

KR – South Korea, Seoul Tel: +82 2 559 0400

MY – Malaysia, Shah Alam Tel: +60 3 7849 0800

NZ – New Zealand, Mt Wellington Tel: +64 9 574 1744

SG – Singapore Tel: +65 6887 6300

TH – Thailand, Bangkok Tel: +662 186 7000-99

TW – Taiwan, Taipei Tel: +886 2 2298 8987

South America

AR – Argentina, Buenos Aires Tel: +54 3327 44 4129

BR – Brazil, Sao Jose dos Campos Tel: +55 800 727 5374

CL – Chile, Santiago Tel: +56 2 623 1216

MX – Mexico, Apodaca Tel: +52 81 8156 6000

We reserve the right to make technical changes. The data correspond to the technical state at the time of printing. © 2012 Parker Hannifin Corporation. All rights reserved.

EMEA Product Information Centre Free phone: 00 800 27 27 5374 (from AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, IE, IL, IS, IT, LU, MT, NL, NO, PL, PT, RU, SE, SK, UK, ZA) US Product Information Centre Toll-free number: 1-800-27 27 537 www.parker.com June 2012

